Parameter Estimation and Filtering Using Sparse Modeling

نویسنده

  • Ashkan Panahi
چکیده

Sparsity-based estimation techniques deal with the problem of retrieving a data vector from an undercomplete set of linear observations, when the data vector is known to have few nonzero elements with unknown positions. It is also known as the atomic decomposition problem, and has been carefully studied in the field of compressed sensing. Recent findings have led to a method called basis pursuit, also known as Least Absolute Shrinkage and Selection Operator (LASSO), as a numerically reliable sparsity-based approach. Although the atomic decomposition problem is generally NPhard, it has been shown that basis pursuit may provide exact solutions under certain assumptions. This has led to an extensive study of signals with sparse representation in different domains, providing a new general insight into signal processing. This thesis further investigates the role of sparsity-based techniques, especially basis pursuit, for solving parameter estimation problems. The relation between atomic decomposition and parameter estimation problems under a so-called separable model has also led to the application of basis pursuit to these problems. Although simulation results suggest a desirable trend in the behavior of parameter estimation by basis pursuit, a satisfactory analysis is still missing. The analysis of basis pursuit has been found difficult for several reasons, also related to its implementation. The role of the regularization parameter and discretization are common issues. Moreover, the analysis of estimates with a variable order, in this case, is not reducible to multiple fixed-order analysis. In addition to implementation and analysis, the Bayesian aspects of basis pursuit and combining prior information have not been thoroughly discussed in the context of parameter estimation. In the research presented in this thesis, we provide methods to overcome the above difficulties in implementing basis pursuit for parameter estimation. In particular, the regularization parameter selection problem and the so-called off-grid effect is addressed. We develop numerically stable algorithms to avoid discretization and study homotopy-based solutions for complex-valued problems. We use our continuous estimation algorithm, as a framework to analyze the basis pursuit. Moreover, we introduce finite set based mathematical tools to perform the analysis. Finally, we study the Bayesian aspects of basis pursuit. In particular, we introduce and study a recursive Bayesian filter for tracking the sparsity pattern in a variable

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Total Ratio of Vegetation Index (TRVI) for Shrubs Sparse Cover Delineating in Open Woodland

Persian juniper and Pistachio are grown in low density in the rangelands of North-East of Iran. These rangelands are populated by evergreen conifers, which are widespread and present at low-density and sparse shrub of pistachio in Iran, that are not only environmentally but also genetically essential as seed sources for pistachio improvement in orchards. Rangelands offer excellent opportunities...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Regularized EM algorithm for sparse parameter estimation in nonlinear dynamic systems with application to gene regulatory network inference

Parameter estimation in dynamic systems finds applications in various disciplines, including system biology. The well-known expectation-maximization (EM) algorithm is a popular method and has been widely used to solve system identification and parameter estimation problems. However, the conventional EM algorithm cannot exploit the sparsity. On the other hand, in gene regulatory network inferenc...

متن کامل

Bayesian Approaches to the Problem of Sparse Tables in Log- Linear Modeling

This paper presents Bayesian approaches to parameter estimation in the log-linear analysis of sparse frequency tables. The proposed methods overcome the non-estimability problems that may occur when applying maximum likelihood estimation. A crucial point when using Bayesian methods is the specification of the prior distributions for the model parameters. We discuss the various possible priors a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015